Optimal Taxation of Risky Entrepreneurial Capital

Corina Boar ¹ Matthew Knowles ²

¹New York University

²University of Cologne

April 12, 2022

Motivation

- Optimal capital taxation.
 - Still no consensus in literature.
- Literature focuses on effect of taxes on level of investment.
 - What about allocation of capital/efficiency of use.
- How should you tax capital? Capital income taxes? Wealth taxes?
- What about entrepreneurship?
 - Wealth concentrated among poorly diversified business owners.
 - Do capital taxes discourage entrepreneurial activity/risk taking?

This Paper

- Analytically tractable framework to look at these issues.
- Optimal linear capital taxation in a setting with...
 - Workers (who supply labor).
 - Entrepreneurs (who use capital and labor to produce output).
- Government maximizes steady state utility of newborn agent.
 - Chooses tax rates on: capital income; labor income; wealth.
- Financial markets are frictional:
 - Due to asymmetric information.
 - Entrepreneurs bear idiosyncratic risk.
 - Entrepreneurs must fund investment partly from own assets.

Preview of Results

- Taxes affect capital allocation, capital stock and entry.
- Optimal taxes in steady state can be expressed as functions of 'sufficient statistics'.
- Capital income and wealth taxes are not equivalent
 Different agents earn different returns to capital.
- Calibrated model:
 - Capital income tax = 3.7%.
 - Wealth tax = 0.2% .
 - Labor income tax = 28.0% .
- Negligible (0.4% CEQ) welfare gains from moving from status quo.

Related Literature

- Taxation of entrepreneurial capital: Albanesi (2011), Shourideh (2014), Panousi (2015), Cagetti and di Nardi (2009), Guvenen, Kambourov, Kuruscu, Ocampu-Diaz & Chen (2018).
- Optimal taxation with financial market imperfections: Biljanovska and Vardoulakis (2017), Abo-Zaid (2014), Itskhoki and Moll (2018).
- Optimal capital taxation sufficient statistics approach: Piketty and Saez (2013), Saez and Stantcheva (2018).

Introduction

Continuum of three types of agent:

- Households:
 - Entrepreneurs: Own capital and produce intermediate goods.
 - Workers: Supply labour.
- Competitive Firms:
 - Financial intermediaries: Allocate finance between entrepreneurs.

Government levies taxes on agents and funds government spending G.

Demographics and Preferences

- Fraction γ of entrepreneurs and workers die at end of period.
 - Replaced by newborn agents who choose occupation for life.
- Agent i's lifetime utility : $\sum_{t=0}^{\infty} (1-\rho)^t (\log(c_{i,t}) + z_{i,i})$.
 - z_{i,j}: i's disutility of working in occupation j.
 - Normalize $z_{i,N} = 0$ for being a worker.
 - z_{i,E} drawn at birth from distribution H_z. ⇒ determines occupational choice.
- Agents can hold annuities, paying return $\frac{1}{1-\gamma}$ between periods.

Production Technology

- In each period t = 1, ..., each entrepreneur i:
 - uses some capital (k_{it}^E) to produce $y_{i,t}^E$ intermediate goods (risky)
 - uses remainder (k_{it}^F) to produce $y_{i,t}^F$ intermediate goods (risk-free)
 - Produce final goods according to $y_t = f(y_t^{E,d}, y_t^{F,d}, n_t^d)$. f(·) displays CRS.
 - Pay each factor its marginal product, $r_{E,t}$, $r_{F,t}$, w_t (profit maximization).

Workers

- Each worker supplies 1 unit of labor to entrepreneurs.
- Workers maximize lifetime utility.
- Subject to: the following budget constraint:

$$c_{i,t}^N + (1-\gamma)a_{i,t+1}^N = w_t(1-\tau_{N,t}) + R_{F,t}a_{i,t}^N.$$

Entrepreneurs

- Entrepreneurs vary in ability $\theta_{i,t}$.
 - Publicly observable. Drawn at birth from U(0,1).
 - Draws new $\theta_{i,t}$ each period with prob. λ_{θ} .
- Entrepreneur i starts period with k_{it} units of capital. Chooses k_{it}^{E} , k_{it}^{F} .
- After choosing k_{it}^E , k_{it}^F , entrepreneur i draws shock $\xi_{it} \sim N(0,1)$.
 - Shock changes stock $k_{i,t}^E \to \tilde{k}_{E,i,,t} = q(\theta_{i,t}, \xi_{i,t}, k_{E,i,t})$.
- Entrepreneur's output of intermediate goods given by:

$$y_{it}^E = \tilde{k}_{i,t}^E, \quad y_{it}^F = k_{it}^F.$$

$$\tilde{k}_{E,i,t} = k_{E,i,t} + (1 - \underline{\epsilon}) \left(\exp \left(\frac{\varphi \xi_{i,t}}{\sqrt{\theta_{i,t}}} - \frac{\varphi^2}{2\theta_{i,t}} \right) - 1 \right) \max \left\{ k_{E,i,t} - \underline{k}_E; 0 \right\}$$

- Functional form implies:
 - $\frac{\partial \tilde{k}_{E,i,t}}{\partial \xi_{i,t}} > 0$; $E[\tilde{k}_{E,i,t}] = k_{E,i,t}$.
 - Variance increases more than proportionately in scale.
 - Limits size of risky projects.
 - Variance decreasing in $\theta_{i,t}$.
 - High θ entrepreneurs can run larger risky projects for given risk. \Rightarrow earn higher average return to capital in equilibrium.

Entrepreneur Budget Constraints (I)

- Entrepreneur i may choose to borrow some b_{it} from the financial intermediary at the start of each period.
- At the end of each period, entrepreneur i
 - Agrees to repay \hat{b}_{it} to the intermediary (state contingent).
 - Pays taxes τ_K, τ_W .
 - Divides remaining resources between consumption and investment.

Entrepreneur Budget Constraints (II)

• Entrepreneur *i* faces the following budget constraints:

$$k_{E,i,t} + k_{F,i,t} = k_{i,t} = a_{i,t} + b_{i,t}.$$
 $c_{i,t} + (1 - \gamma)a_{i,t+1} + \hat{b}_{i,t} = (1 - \delta) \left(\tilde{k}_{E,i,t} + k_{F,i,t} \right) + \pi_{i,t} - T_{i,t},$

where

$$\pi_{i,t} = r_{E,t} \tilde{k}_{E,i,t} + r_{F,t} k_{F,i,t},$$

$$T_{i,t} = \tau_{K,t} \pi_{i,t} - \tau_{K,t} \delta k_{i,t} + \tau_{W,t} k_{i,t},$$

Financial Contract

- Entrepreneur writes one-period contract with intermediary.
 - Contract specifies b_{it} & state contingent \hat{b}_{it} .
 - Maximizes entrepreneur's expected present discounted utility subject to constraint that intermediary breaks even.

However:

- Entrepreneur's realization of ξ_{it} is private information.
- Entrepreneur can falsely under-report ξ_{it} and can secretly hide capital and convert into units of final output.

Agency Frictions

 For each unit of capital the entrepreneur hides, she can convert this into $\phi \in (0,1)$ units of consumption.

Optimal Tax

: Financial contract must satisfy incentive compatibility constraint:

$$\frac{\partial \hat{b}_{it}}{\partial \xi_{it}} + \frac{\partial T_{i,t}}{\partial \xi_{it}} \leq (1 - \phi) \cdot \frac{\partial}{\partial \xi_{it}} \left(\pi_{it}(\xi_{it}) + \xi_{i,t}(1 - \delta) k_{it}^{E} \right)$$

Equilibrium Optimal Contract

- Entrepreneur's optimal contract with intermediary is equity and debt:
 - Entrepreneur sells fraction $1 \frac{\phi}{r_E(1-\tau_K)+(1-\delta)}$ 'equity' in her k_E .
 - Takes out risk-free loan from intermediary of value $R_E^{-1} \in k_{it}^E$.
- Agency friction ⇒ entrepreneur cannot fully diversify risk:
 - \Rightarrow discourages from choosing high k_{it}^{E} .
 - Entrepreneur's k_{it}^{E} depends on initial wealth.
 - Taxes affect k_{it}^{E} by affecting rate of return and wealth.

Aggregate Effects of Taxes

- Taxes affect both level and allocation of capital stock.
- In particular, taxes affect:
 - How much entrepreneurs save.
 - Fraction of wealth held by high ability entrepreneurs.
 - How much these entrepreneurs allocate capital to the risky technology, K_E , versus the risk-free technology, K_F .

Optimal Tax

•0000

- How many agents become entrepreneurs.
- From growth accounting perspective:
 - Taxes affect aggregate K, N and TFP.
 - These effects can be characterized analytically.

Optimal Tax Scheme

- Assume govt. maximizes SS newborn expected lifetime utility.
- Optimal taxes can be written as a function of:
 - Tax base of each tax.
 - How much tax is paid by workers.
 - Elasticities of tax base with respect to taxes.
- Formula does not directly depend on:
 - Details of production function, utility function, entrepreneur ability distribution, agency friction.
 - But these specific assumptions allow us to characterize elasticities.

Optimal Tax Formula

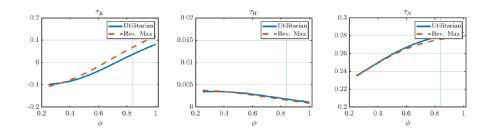
$$\mathcal{T} = \left(\mathbf{I} - g_1 + B^{-1} \left(-\mathcal{E} + \mathbf{e}^{N} \mathbf{1}^{T} \right) B \right)^{-1} \left(\mathbf{1} - \mathbf{g}_2 + B^{-1} \overline{G} \mathbf{e}^{N} \right),$$

Optimal Tax

00000

$$\begin{split} \boldsymbol{B} &= \begin{pmatrix} \boldsymbol{B}_{\tau_K} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B}_{\tau_W} \end{pmatrix}, \quad \boldsymbol{B}^N = \begin{pmatrix} \boldsymbol{B}_{\tau_K}^N & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{B}_{\tau_W}^N \end{pmatrix}, \quad \mathcal{E} = \begin{pmatrix} \boldsymbol{e}_{\tau_K}^{B_{\tau_K}} & \boldsymbol{e}_{\tau_K}^{B_{\tau_W}} \\ \boldsymbol{e}_{\tau_K}^{B_{\tau_K}} & \boldsymbol{e}_{\tau_W}^{B_{\tau_W}} \end{pmatrix}, \\ \boldsymbol{g}_1 &= \boldsymbol{I} - \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} (\boldsymbol{I} - \boldsymbol{B}^{-1} \boldsymbol{B}^N) - \begin{pmatrix} \boldsymbol{e}_{\tilde{w}}^N \end{pmatrix}^{-1} (\boldsymbol{1} - \boldsymbol{N}) \, \boldsymbol{B}^{-1} \boldsymbol{e}^N \boldsymbol{1}^T \boldsymbol{B}, \\ \\ \boldsymbol{g}_2 &= \begin{pmatrix} \boldsymbol{B}^{-1} \boldsymbol{B}^N \end{pmatrix} \boldsymbol{1} + \begin{pmatrix} \boldsymbol{B}_{\tau_N} - \overline{\boldsymbol{G}} \end{pmatrix} \begin{pmatrix} \boldsymbol{e}_{\tilde{w}}^N \end{pmatrix}^{-1} (\boldsymbol{1} - \boldsymbol{N}) \, \boldsymbol{B}^{-1} \boldsymbol{e}^N. \end{split}$$

- Higher elasticities \Rightarrow bigger $\mathcal{E} \Rightarrow$ smaller τ_K, τ_W .
- Elasticities are partial equilibrium (ignore price changes).
 - But include changes to SS wealth distribution.


Calibration

- Set parameters to target:
 - Standard real economy macro moments (e.g. labor share).
 - ROR of equity; risk-free rate; debt-to-asset ratio; equity issuance; small business risk; profitability autocorr.; frac. of entrepreneurs.
 - Set initial taxes on capital income, wealth and consumption to approximate current US values.
- Calibration implies optimal $\tau_K = 3.7\%$, $\tau_W = 0.2\%$, $\tau_N = 28.0\%$.
 - If govt. only cares about workers, $\tau_K = 20\%$, $\tau_W = 0\%$, $\tau_N = 26.2\%$.
 - Intuition: Much tax on capital income falls on low θ entrepreneurs.
 - \Rightarrow reduces negative effect of these taxes on capital accumulation.
 - Capital accumulation is more sensitive to wealth taxes.
 - BUT, capital taxes hurt poorer entrepreneurs.

Optimal Taxes

Figure 1: Optimal Taxes and Financial Frictions

- ROS \uparrow : opt. $\tau_K \uparrow$.
- Entry elasticity \uparrow : opt. $\tau_K \uparrow$, opt. $\tau_W \downarrow$.
- Opt. taxes not strongly affected by ability persistence.

Conclusion

- First analytically tractable framework combining:
 - Inequality between heterogeneous capital owners and workers.
 - Misallocation of capital due to endogenous financial frictions.
- Taxes affect capital allocation, capital stock and entry.
 - Nevertheless, optimal taxes are a function of sufficient statistics.
- Capital income and wealth taxes are not equivalent.
- Optimal capital income tax positive, lower than labor tax.
 - Elasticity of cap. income to tax lower than in Chamley-Judd.

Calibration

Parameter	Value used	Target moment
γ	0.010	Lifespan 100 Years
ρ	0.009	Average net return to capital 4%
δ	0.070	Depreciation
$\lambda_{ heta}$	0.115	Profitability autocor. (Cooper and Haltiwanger, 2006)
arphi	0.150	Small Bus. Risk (Panousi, 2012)
<u>€</u>	0.350	Debt-to-asset ratio (Boar and Midrigan, 2019)
α_E	0.193	Labor share 2/3
$lpha_F$	0.137	Risk-free rate
α_N	0.602	Fraction of entrepreneurs (Boar and Midrigan, 2020)
π	0.016	Return to Equity
$ au_K$	0.200	Corp. tax rate small businesses (OECD Tax Database
$ au_W$	0	Current US level
$ar{G}$	0.200	Govt. spending/GDP
ϕ	0.840	Small Bus. Owner Equity Share (SSBF)