Quantifying the Macroeconomic Impact of Credit Expansions

Corina Boar NYU

Matthew Knowles
University of Cologne
Kjetil Storesletten
University of Oslo
Yicheng Wang

Peking University

June 4, 2021

Motivation

- ► Motivating questions:
 - ▶ How do shocks to bank credit supply affect real economy?
 - ► Through what channels do these effects occur?
 - Literature has variously emphasized effects on demand, investment, misallocation.

- ▶ What we do:
 - Estimate effects of a specific expansionary credit shock.
 - ▶ US banking deregulation in 1980s.
 - Estimate a theoretical model to understand mechanisms.

This paper

- ► Empirical analysis
 - Quasi-natural experiment of US bank branching deregulation.
 - Expansionary effects on e.g. employment, GDP.
 - Consistent with empirical literature.
 - ▶ Not sufficient to infer which mechanisms are important.
 - ▶ E.g. are supply or demand side effects more important?
- ▶ Build and estimate a quantitative model
 - ► Heterogeneous households and firms.
 - ▶ Model replicates the empirical responses quite well.
 - ▶ Use model to evaluate different channels of shock effects.
- ▶ Main finding: lion's share of effect is via firm side:
 - ▶ Cheaper credit increases investment and entry.
 - ▶ Household demand channel less important.

Literature Review

► Effects of US Banking Deregulation:

Jayaratne and Strahan (1996); Kroszner and Strahan (2014); Mian, Sufi, Verner (2020).

► Macroeconomic Effects of Financial Shocks:

Buera and Moll (2012); Buera and Nicolini (2020); Khan and Thomas (2013); Guerrieri and Lorenzoni (2017).

▶ Our contribution:

- Estimating impulse responses of bank deregulation.
- Estimating a quantitative model to evaluate mechanisms.

Data sources

Compile state-level panels for:

▶ Bank related variables:

history

- Deregulation dates: Jayaratne and Strahan (1996), Morgan, Rime and Strahan (2004), Park (2011)
- ► Federal Deposit Insurance Corporation (FDIC) Call Reports: interest rates on loans, loan quantities
- ► Real variables:
 - ▶ Bureau of Economic Analysis (BEA): GDP, employment, wages
 - ▶ Business Dynamics Statistics (BDS): firm entry and exit

Estimation method

Local Projection Method - Jorda (2005), Teulings and Zubanov (2014)

► In a nutshell:

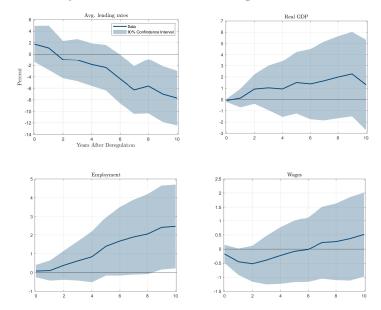
$$g_{i,t+k} = \gamma_k D_{i,t} + \epsilon_{i,t+k}, \quad k \ge 0 \tag{1}$$

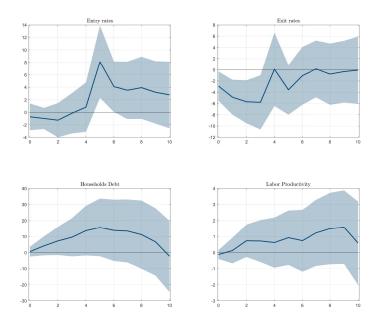
- $ightharpoonup g_{i,t+k}$: growth rate of variable of interest, in state i at t+k
- \triangleright $D_{i,t}$: 1 if intrastate branch deregulation in state i at time t
- $ightharpoonup \gamma_k$: impulse response at t+k

Estimation method

Local Projection Method - Jorda (2005), Teulings and Zubanov (2014)

► Actual specification:


$$g_{i,t+k} = \alpha_i^k + \bar{\alpha}_t^k + \sum_{j=1}^J \beta_j^k g_{i,t-j} + \sum_{j=0}^J \gamma_j^k D_{i,t-j} + \sum_{j=0}^{k-1} \delta_j^k D_{i,t+k-j} + \Gamma \mathbf{X_{i,t}} + \varepsilon_{i,t+k}$$


$$IRF_{g}\left(k\right)=\gamma_{0}^{k},\,k\geq0$$

- ▶ Exploit variation across states in the timing of deregulation
 - ▶ Identifying assumption: timing not affected by the outcome variables we consider, conditional on controls (political related, banking industry related, and local business cycles, ...)

Deregulation Details

Expansionary effects of bank deregulations

Model

- ▶ Small open economy model of a US state.
- ► To replicate the empirical responses
- ▶ To investigate channels and distinguish demand vs. supply effects

Households

- ► Two types of households:
 - ▶ Constrained (measure χ) & unconstrained (1χ) .
- ➤ All are identical, except that constrained cannot participate in asset markets (i.e. hand-to-mouth).
- No idiosyncratic risk.
 - \Rightarrow a representative household of each type.
- ▶ Households choose non-tradable and tradable goods, $C_{T,t}, C_{N,t}$, labor supply N_t and next-period financial assets B_t (only the unconstrained) to maximize

$$E_0 \sum_{t>0} \beta^t U(C_{T,t}, C_{N,t}, N_t)$$

Households

- ▶ Budget constraints:
 - Constrained:

$$C_{T,t}^{\mathrm{Con.}} + P_{N,t} C_{N,t}^{\mathrm{Con.}} = w_t N_t^{\mathrm{Con.}}$$

► Unconstrained:

$$B_t^{\mathrm{Un.}} + C_{T,t}^{\mathrm{Un.}} + P_{N,t} C_{N,t}^{\mathrm{Un.}} = \Pi_t^{\mathrm{Un.}} + w_t N_t^{\mathrm{Un.}} + B_{t-1}^{\mathrm{Un.}} \left(1 + r_{t-1}^H \right)$$

▶ The interest rate faced by the household

$$r_t^H = r + \psi_0 \left(e^{\frac{\overline{B} - B_t}{|\overline{B}|}} - 1 \right) + \psi_t^H \tag{1}$$

- ightharpoonup r: common interest rates across different states
- $ightharpoonup \psi_0 > 0$: interest rates increasing in level of debt
- $\blacktriangleright \psi_t^H$: underlying shocks, changed when deregulation

Production

- ▶ Intermediate goods and final goods producers
- ► Intermediate goods producers
 - ► Monopolistically competitive
 - \triangleright Each produces a separate variety i, sold at price p_i
 - ► Rent capital and hire labor

Final goods producers

▶ Choose input of intermediate goods q_i , and output of each final good, to maximize profits

$$y_T + P_N y_N - \int_0^1 p_i q_i di$$

subject to production constraint:

$$(y_T^{\mu} + y_N^{\mu})^{\frac{1}{\mu}} \le \left[\int_0^1 (q_i)^{\frac{\eta - 1}{\eta}} di \right]^{\frac{\eta}{\eta - 1}}$$

Intermediate goods producers: Setup

- New firms pay entry cost before entering
- \triangleright After entry, draw productivity z from distribution G_z .
 - $ightharpoonup G_z \sim \text{Pareto}.$
 - ▶ i.i.d. across firms
- ► Each period:
 - \triangleright z stays the same with prob. ρ_z .
 - ▶ Draws new z' from G_z with prob. $1 \rho_z$.
 - ▶ Pays fixed cost c^F to stay in business, or exits.
 - Rents capital & labor.
- ► Intermediate goods firms production function

$$y = z^{\left(\frac{1}{\eta - 1}\right)} k^{1 - \alpha} n^{\alpha}$$

ightharpoonup Endogenous exit ightharpoonup endogenous firm dynamics and distrib.

Intermediate goods producers: Entry

- ▶ Entry cost is paid in units of tradeable goods
- Firm's entry cost is increasing and convex in aggregate measure of entrants: $\nu\left(M_t^e\right)^{\Theta}$ (e.g., Gutierrez, Jones, Philippon, 2019)
- ► Entry cost = expected discounted profits for entrants.

Capital goods producer

- ▶ Perfectly competitive, owns capital stock and leases it to intermediate goods producers at rate $r_t^K + \delta_K$
- \triangleright Produces capital K_t according to

$$K_{t+1} = (1 - \delta_K)K_t + I_t - \kappa \left(\frac{K_{t+1}}{K_t} - 1\right)^2 (K_t)$$

Assume households own capital goods producers

Equilibrium

- ▶ Households and firms optimize
- ► Total profits (net of entry costs) are given by

$$\Pi_t = \int_i \pi_{i,t}^F di + \Pi_t^K - \nu \left(M_t^e \right)^{1+\Theta}$$

- ► Markets clear
 - ► Labor market (labor not moving across states)

$$M_t^F \int I_{\{z \ge z^{\star}(\mathbf{X}_t)\}} n^{\star}(z) \mu_t(z) dz = N_t$$

► Capital goods market

$$\int I_{\{z \ge z^{\star}(\mathbf{X}_t)\}} k^{\star}(z) \mu_t(z) dz = K_t.$$

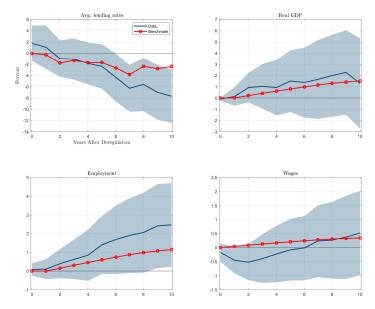
► Non-tradable goods market

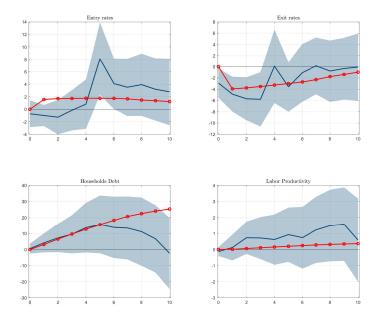
$$C_{N,t} = Y_{N,t}$$

Calibration

Table: Parameters set exogenously

Parameter	Description		
В	Discount factor	0.96	
σ	Risk aversion	2.0	
γ	Preference over Tradable goods	0.7	
δ_K	Capital depreciation	0.1	
α	Labor share for intermediate goods firms	0.64	
η	Demand elas. for intermediate goods	10	
ς	elas. of substitution between tradable and local goods	-2	
v_L	Labor supply elasticity	2.0	
ξ	Productivity Pareto dist.: scale para.	1.3	


Estimation

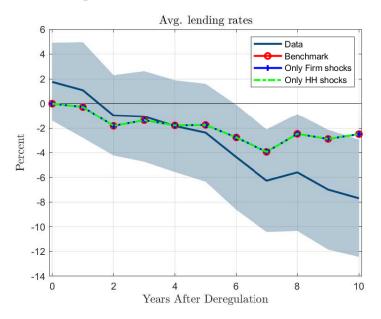

Table: Endogenously estimated parameters

Parameter	Description	Value	Relevant Moments
$\{\psi_t^H\}t=0^\infty$	Sequence of credit shocks		Lending rate responses
\bar{B}	HH steady state debt level	-0.4542	s.s. Debt/GDP
ν	Entry cost: linear coefficient	2.4274	s.s. Entry and exit rates
c^F	Flow operation costs	0.1031	s.s. Entry and exit rates
κ	Capital adj. costs	1.2002	Employment and GDP responses
Θ	Elasticity of entry costs w.r.t. to mass of new firms	0.5192	Entry and exit responses
ρ_z	Persistence for firm-level productivity	0.8813	Entry and exit responses
ψ_0	Elasticity of HH interest rate to debt	0.0096	HH Debt responses

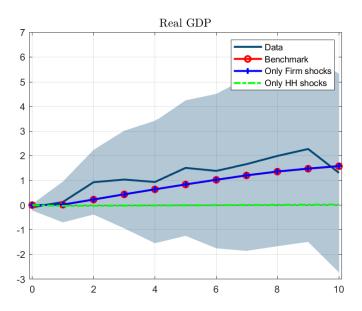
Results

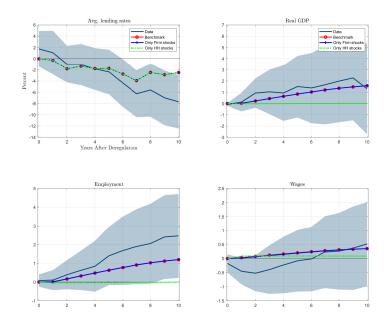
Model can replicate the empirical responses quite well

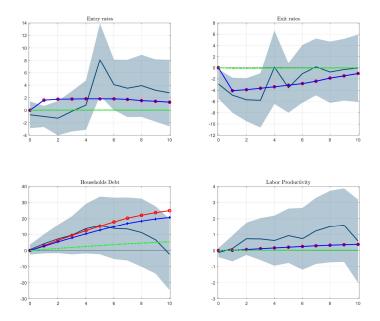
Inspecting the mechanism


- Gauge the relative importance of demand vs. supply side
 - ► Lower borrowing rates for either households (demand) or firms (supply)
- ▶ (1) Suppose only shocks to firms
 - Firms face same interest rates path as in benchmark

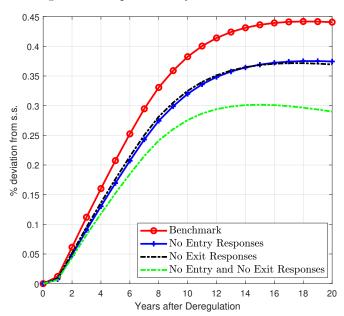
$$\widetilde{r}_t^{\rm Firms} = r_t^{\rm Benchmark\ Model}$$


- ▶ Households face constant interest rate: $\tilde{r}_t^{\text{HH}} = r + 0 + 0$
- ▶ (2) Suppose only shocks to households


$$\qquad \qquad \widetilde{r}_t^{\rm HH} = r_t^{\rm Benchmark\ Model} \quad \text{ and } \quad \widetilde{r}_t^{\rm Firms} = r + {\color{red}0} + {\color{red}0}$$


Interest rates path

Almost all effect comes from firms


Demand vs. Supply side

- ▶ When firms face lower interest rate (supply shock)
 - ► Lower costs to supply capital goods
 - ▶ ⇒ More capital goods supplied to intermediate goods firms and thus more production
 - ightharpoonup \Rightarrow Higher profits, more entry and less exit
- ▶ When households face lower interest rate (demand shock)
 - ► Households move consumption upfront
 - Very little and very transitory: $P_{N,t} \uparrow, C_{N,t} \uparrow$; also increases in nominal wages; relatively big increases in household debt
 - Very little change in production and employment overall (details)
- Overall, after deregulation, firms' responses account for almost all changes

Further analysis of the supply side

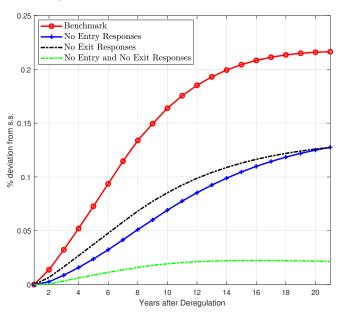
- ► Compare the magnitude of different channels
- ▶ (1) Suppose no endogenous responses in entry
 - ▶ Keep the mass of new entrants as in the initial steady state
 - ► Households/firms still optimize; all local markets clear
- ▶ (2) Suppose no endogenous responses in exit
- ▶ (3) Suppose no endogenous responses in entry and exit
- ► Focus on labor productivity

Figure: Labor productivity and counterfactuals

Further analysis of the supply side: findings

- ► Aggregate labor productivity increases
 - ▶ Without endogenous entry and exit, magnitude is 30% less
 - Entry vs. exit, are roughly equally important
 - ▶ Intensive margin: using more capital accounts for 70% of the effect
- Confirm this pattern by also looking at Solow Residual (controlling for the contribution of Capital) (details)
- ► Also robust with different model parameters (details)

Conclusions

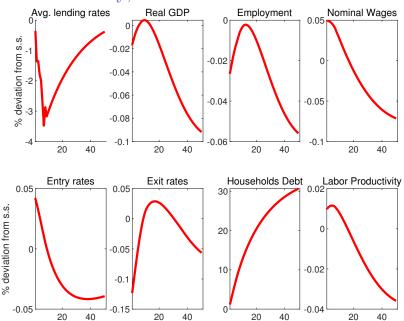

- ▶ How does increase in bank credit stimulate the economy?
- ► Empirical and quantitative analysis: most of the effects are through firms
- Going forward, allow for additional features
 - 1. Introduce nominal rigidities for prices/wages ("best shot" for demand side)
 - 2. Entry and exit for intermediate goods firms within each sector (so that the EoS between tradables and non-tradables is time-varying)

Further analysis of the supply side: Solow residual;

Go back

- Calculate Solow residual, controlling the contribution from Capital
 - ▶ Using standard growth accounting
 - ▶ Assume Cobb-Douglas production with capital share of 1/3
- ► Results: Solow residual increases following financial liberalization
 - ► Entry and exit are roughly equally important in accounting for the rise in the Solow residual
 - ▶ Without endogenous responses in entry and exit, almost no change in Solow residual

Figure: Solow residuals and counterfactuals


Labor productivity and decompositions: robustness;

Go back

	Total increases (%)	Relative to Total changes		
	` '	No entry	No exit	No entry and exit
Benchmark	0.40	84%	85%	71%
Risk aversion				
$\sigma = 3.0$	0.41	84%	85%	72%
$\sigma = 1.2$	0.38	83%	84%	69%
Labor supply Elasticit	у			
$v_L = 2.0$	0.44	85%	86%	73%
$v_L = 6.0$	0.30	80%	81%	65%
Elasticity of entry cost	S			
$\Theta = 0.78$	0.40	85%	82%	72%
$\Theta = 0.31$	0.41	83%	88%	70%
Capital adj. costs				
$\kappa = 1.80$	0.37	83%	85%	71%
$\kappa = 0.72$	0.43	85%	85%	72%
Interest rate Elasticity				
$\psi_0 = 9.5 \times 10^{-4}$	0.75	72%	75%	56%
$\psi_0 = 6.2 \times 10^{-2}$	0.14	92%	91%	81%

Shocks to hhs only;

Years after deregulation

Go back

History of bank deregulation

Intrastate Branching

- ▶ 1927 McFadden Act gave states the authority over branching activities within their borders
- ▶ Most states restricted branch expansion into the 1970s
- ► Intrastate deregulation: between 1970 and 1999 other states lifted restrictions on branching in cohorts
 - Allowed acquisition of existing banks and creation of new branches

back

Determinants of bank deregulation

- 1. Private interest factors: larger share of small banks delays deregulation
- 2. Economic environment: larger share of small bank-dependent firms speeds deregulation
- 3. Partisan structure: larger share of Democrats delays deregulation
- 4. Timing: 3 innovations in the 1970s ↓ the value of local monopolies
 - ▶ invention of the ATM
 - banking by mail and telephone of mutual funds products
 - ▶ reduction of transportation and communication costs

